Interference, diffraction, and refraction, via Dirac’s notation
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The diffraction grating equation and the law of refraction are derived, in the macroscopic domain,
using a generalized interference equation derived via the application of Dirac’s notation to classical

optics. © 1997 American Association of Physics Teachers.

L. INTRODUCTION

In classical optics textbooks the diffraction grating equa-
tion and the law of refraction, also known as Snell's law, are
often introduced separately.'™ For instance, Born and Wolf'
introduce the law of refraction in their first chapter using
Maxwell's relation, n=/eg. The diffraction grating equa-
tion, on the other hand, is introduced much later following
their discussion of Fraunhofer and Fresnel diffraction.’ Jen-
kins and White? introduce the law of refraction utilizing geo-
metrical arguments very early while the diffraction grating
equation is derived much later via the addition of complex
amplitudes.” Other authors®® discuss the law of refraction
and the diffraction grating equation within the boundaries of
geometrical optics, but in distinct sections with Snell’s law
being discussed first.

In this paper, a description is given on how to apply
Dirac’s notation,” in the macroscopic domain, to characterize
the propagation of electromagnetic radiation via an N-slit
transmission diffraction grating. In this regard, application of
Dirac’s notation to the relevant geometry yields a general-
ized interferometric equation whose interference term leads
to the diffraction grating equation and subsequently to the
law of refraction. This approach provides a unified descrip-
tion of interference, diffraction, and refraction. Following
Feynman® the main mathematical assumption made here is to
relate the probability amplitudes to classical complex wave
functions.

The use of quantum techniques in the description of inter-
ference and other optical phenomena has been previously
discussed by several authors.*”'" Feynman applied the Dirac
formalism to discuss the two-slit interference experiment.
He also used path integrals to describe diffraction through a
single slit,” and illustrated the application of quantum elec-
trodynamic methods to discuss interference, diffraction, and
reflection in the microscopic domain.'” Lamb'' has recently
outlined the use of the radiation field in quantum mechanics
to characterize several optical phenomena of interest. Also, a
recent discussion on the law of refraction in quantum me-
chanics, in the microscopic regime, has been published in
this journal."

In the area of mathematical techniques it is interesting to
note that the methods of Hamiltonian optics, designed to deal
with geometrical optics, have been considered to be analo-
gous to those of quantum mechanics."* More specifically, it
can be mentioned that Dirac introduced Hamilton’s principle
to quantum mechanics’ and that Feynman adopted this prin-
ciple in the formulation of his path integrals method.”

The discussion presented in this paper deals with the ap-
plication of Dirac’s notation in the macroscopic regime. This
was first done to characterize N-slit interference'® resulting
from the interaction of coherent light with transmission grat-
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ings incorporating a large number of slits per mm. Since
then, the approach has been successfully applied to predict
near-field diffraction and generalized interference cases of
practical interest.'*"!

Although in this paper we are concerned with the interac-
tion of an expanded laser beam with a transmission grating,
it should be mentioned that conceptually we have based our
description of interference on Dirac’s hypothesis that each
photon goes partly into each slit and that each photon then
interferes with itself.”'? In this regard, interference is char-
acterized via the mathematical interaction of probability am-
plitudes. Dirac did not limit the extent of his discussion to
single photons but wrote about beams of light and photons
associated with such beams. Of further interest is the fact
that Dirac specified that each of the translational states of a
photon is associated with one of the wave functions of ordi-
nary wave optics.’

II. BACKGROUND

The experimental apparatus considered here is illustrated
in Fig. 1. A laser beam is expanded in one dimension by a
multiple-prism beam expander. The expanded laser beam
then illuminates a generalized transmission grating and inter-
ference occurs at a screen, which is a charge-coupled device
(CCD) detector array in this case.'”'® The problem is now
treated by considering the probability amplitude for propaga-
tion from the exit surface of the beam expander (s) to the
detection screen (x) via the array of N slits (j). Hence, we

can wrim?.ﬂ.l-l,li

N
(xlsy= 2 (xlXils). (M

Here. the probability amplitudes can be expressed as plane
waves® in the form of (jls)=W(r, Jexp(—if,) and {x|j)
=W(r; Jexp(—id,). Here, #; and ¢; are the phase terms
associated with the incidence and diffraction waves, respec-
tively. For a time-independent plane wave these phase terms
become the wave number (k) multiplied by the respective
path difference.’®
Equation (1) can be written as

N
{x|s)= 2] W(r)e ", 2

=
where W(r)=W(r, )W(r;,) and Q;=(6;+¢;). The
propagation probability can be obtained by expanding Eq.

(2) and multiplying the expansion with its complex conju-
gate. Rearranging terms and using the identity

) CDS(.ﬂm = n}_} = i — [I;-}+ el’lﬂm- !l_rl.
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Fig. 1. A laser beam is expanded by a multiple-prism beam expander whose
exit plane is denoted by (5). The expanded laser beam then illuminates a
generalized grating (j). Interference occurs at the screen or CCD array
labeled by (x) (from Ref. 17).

we can write the generalized propagation probability in one
dimension,'*'3

|(x]|s)]? E (r)? +22 W(r;)
N
> W(r,)cos(Q,,— Q). 3)
= J+

Figure 2 compares the measured interferometric radiation
distribution for a 100-slit grating, at a grating-detector dis-
tance of 75 cm, with the predicted distribution using Eq. (3)
for plane wave illumination of the grating.'”'® Additional
comparison cases are available in the literature.'™"® The case
of illumination via a wide slit introducing a diffraction dis-
tribution at the j plane has also been considered. Further-
more, an equation for the two-dimensional case has been
given.'

A more detailed view of the grating plane is given in Fig.
3. The phase difference term in Eq. (3) can be written as'

COS{(SHI_ 'qj)t ( QS,,,_ gbj)}:COS{([m—fm_ I)kl
:(Lm_[‘m— 1 ]k2}‘ (4)

where ky=2mn, /N, and k;=2mn,/\, are the correspond-
ing wave numbers of the optical regions defined in Fig. 3(b)
Here, we have used A ;=X\, /n; and Ay=X\, /n, where A,
the vacuum wavelength and n and n, are lhl: corrcspondmg
indexes of refraction."”” The linear dependence of A, on the
refractive index, according to A,=A\n, is a well-known
physical relation' widely applied in the wavelength tuning of
laser resonators.

In the phase difference terms the path differences can be
expressed exactly via geometrical equations such as'’

|Lprr-Lnr—1|:2§mdm"r|i‘m+l‘m {5)
L =a’+(&n+(dul2)?, (6)
no1 =@ (£, (d,2)?, ©)

where f,,, is the lateral displacement, on the x plane, from the
projected median of d,, to the interference location. From the
geomelry we can write

sin @, = (£, + (d/2))/ Ly . (®)
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Fig. 2. Interferometric signal produced by the illumination of 100 slits 30
pm wide and separated by 30 gm. Interference at the Oth and =1 diffrac-
tion orders is shown. The grating—screen distance is 75 cm and the laser
wavelength is 632.8 nm. The signal in (a) is a measurement. Here, the
horizontal scale is given in pixels each 25 pm wide. The corresponding
theoretical pattern is illustrated in (b) (from Ref. 17).

For the condition a=d,, (see Fig. 3), we have |L,,+L,,_|
=2L,, . Thus, using Egs. (5) and (8), we can write

ILm_Lm—II:Hdm sin q"mr (g)
= lp-1|=d,, sin ©,, (10)

where @, and &, are the angles of incidence and diffrac-
tion, respectively.
Since maxima can occur at'

{I"‘m_Iur—]|Nli|Lm_Lm—IIHE}(ZQT!AU):MJ#' (l]}
then, using Egs. (9) and (10), we can write
d,{n, sin ®,*n, sin ®,H27/\,)=Mm, (12)

where M=0,246,... .
For ny=n,=1, we can write A=X\, and Eq. (12) reduces
to the well-known diffraction grating equation

d,,(sin ©,,=sin P, )=mA\, (13)
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Fig. 3. (a). A detailed view of the grating plane (/) and the detection screen
plane (x) depicting the geometrical parameters included in Egs. (51-(9). (b)
The grating plane (j) for the condition a®=d,, .

where m=0,1,2,3,... .

Now, as d,, is made very small relative to a given X, the
only possible solution for Eq. (13) is found for the case of
m=0. For example, since the maximum value for (sin ©®,,
*sin ) is 2, for a 5000-lines/mm transmission grating no
diffraction can be observed for wavelengths in the visible
spectrum. Hence, in this regime the transmission grating acts
similarly to a glass slab. This can be easily verified by shin-
ing a HeNe laser beam (A =632.8 mm) on a 5000-lines/mm
transmission grating.

639 Am. J. Phys., Vol. 65, No. 7, July 1997

Consequently, for a high groove density transmission grat-
ing illuminated by a sufficiently long wavelength, so that the
condition d,, <€\ is satisfied, interference ceases to occur and
only refraction is observed, thus Eq. (11) can only be solved
for

{]’lm“‘im—i|”ii1Lm_Lur—]|n2}(2ﬂ-fAv):0' “4]
Thus we can have
n, sin ®,=n,sind,, . (15)

For an air—glass interface, n =1, and we may write
sin ©,,=~n, sin P, (16)

which has the form of the well-known law of refraction.

1. DISCUSSION

_ Interference, diffraction, and refraction phenomena have
often been discussed as distinct subjects in optical
textbooks.' ™ In this paper it is suggested that these subjects
can be considered in a unified approach, in the macroscopic
domain, with the fundamental description for interference
giving rise to the diffraction grating equation and the law of
refraction.

This unified approach involves the application of Dirac’s
notation to a transmission grating geometry to yield a gener-
alized interference equation. From this interference equation
the phase difference term is used in conjunction with the
same geometry to derive an expression for the diffraction
grating equation and the law of refraction for the limiting
case of d,,<\. It is useful to reiterate that the basic element
in this derivation is the interaction of classical wave func-
tions according to the mathematical construct provided by
the application of Dirac’s notation to propagation of electro-
magnetic radiation from a source to a detection array via a
transmission grating.

This method leads to the diffraction grating equation in a
fairly straightforward manner. Deducing the law of refraction
requires the introduction of the indices of refraction as math-
ematical constants, via A,=An, and the application of a
physical observation in the limiting case of d,,<\. Although
an explanation of the origin of the refraction index would
require invoking microscopic arguments,u beyond our
scope, the Dirac method does offer a simple, brief, and uni-
fied description of fundamental optical phenomena. The gen-
eralized aspects of this method combined with the facility it
offers to solve problems of practical interest'”'* should offer
appealing characteristics from pedagogical and utilitarian
perspectives. Although it is most certain that Feynman fore-
saw the pedagogical and scientific value of the application of
Dirac’s notation to the two-slit experiment,” it is less certain
whether anyone could have predicted its practical value.'”'®

IV. CONCLUSION

An alternative unified avenue to the description of inter-
ference, diffraction, and refraction has been provided. This
method applies Dirac’s notation to describe electromagnetic
wave propagation to a generic optics geometry involving a
source, a transmission grating plane, and an interference
plane. The simple mathematical formalism of the description
provides a Pcdagogical alternative and significant practical
advantages.'""*
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